Issue 42, 2020

A two-dimensional h-BN/C2N heterostructure as a promising metal-free photocatalyst for overall water-splitting

Abstract

The construction of a heterostructure (HS) is an effective strategy to modulate the desired properties of two-dimensional (2D) materials and to extend their applications. In this paper, based on the density functional theory, we predict a metal-free type-II HS formed by h-BN and C2N single layers. The h-BN/C2N HS possesses a smaller bandgap than individual h-BN and C2N single layers, and it exhibits excellent visible light absorption. Importantly, its band edge positions satisfy the requirements for spontaneous water-splitting. With the assistance of the built-in electric field across the HS and the band offset, the photoinduced carriers can be readily spatially separated. Free energy calculations indicate the high catalytic activity for water oxidation and reduction reactions. The performance can be further enhanced by strain, which modulates the bandgap and the band edge positions of the HS. The band alignment may undergo a transition from type-I to type-II under strain, offering an effective switch for the reaction. The appropriate bandgap, suitable band edge positions, and effective carrier separation make the h-BN/C2N HS a promising candidate for use as a photocatalyst in water-splitting.

Graphical abstract: A two-dimensional h-BN/C2N heterostructure as a promising metal-free photocatalyst for overall water-splitting

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2020
Accepted
05 Oct 2020
First published
05 Oct 2020

Phys. Chem. Chem. Phys., 2020,22, 24446-24454

A two-dimensional h-BN/C2N heterostructure as a promising metal-free photocatalyst for overall water-splitting

G. Wang, Z. Li, W. Wu, H. Guo, C. Chen, H. Yuan and S. A. Yang, Phys. Chem. Chem. Phys., 2020, 22, 24446 DOI: 10.1039/D0CP03925J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements