Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 18, 2020
Previous Article Next Article

Designing an active Ta3N5 photocatalyst for H2 and O2 evolution reactions by specific exposed facet engineering: a first-principles study

Author affiliations

Abstract

The effects of native defects and exposed facets on the thermodynamic stability and photocatalytic characteristics of Ta3N5 for water splitting are studied by applying accurate quantum computations on the basis of density functional theory (DFT) with the range-separated hybrid functional (HSE06). Among the three explored potential candidates for O-enriched bulk Ta3N5 structures with substituted O at N sites and accompanied by interstitial O or Ta-vacancies, the first and third structures are relevant. The four possible (001), (010), (100) and (110) low Miller index exposed facets of Ta(3−x)N(5−y)Oy (y = 7x) are also explored, which show lower formation energies than those of Ta3N5. This highlights O occupation at N sites together with Ta vacancies as native defects in the prepared samples. The most appropriate facets for HER and OER are predicted based on the redox and transport characteristics. Our work predicts (001) and (110) facets only for HER, whereas the (010) facet is predicted for OER. Our findings indicate the importance of understanding the significance of various facets when preparing and testing new material photocatalysts for water splitting reactions.

Graphical abstract: Designing an active Ta3N5 photocatalyst for H2 and O2 evolution reactions by specific exposed facet engineering: a first-principles study

Back to tab navigation

Supplementary files

Article information


Submitted
12 Mar 2020
Accepted
16 Apr 2020
First published
16 Apr 2020

This article is Open Access

Phys. Chem. Chem. Phys., 2020,22, 10295-10304
Article type
Paper

Designing an active Ta3N5 photocatalyst for H2 and O2 evolution reactions by specific exposed facet engineering: a first-principles study

M. Harb, L. Cavallo and J. Basset, Phys. Chem. Chem. Phys., 2020, 22, 10295
DOI: 10.1039/D0CP01394C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements