Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 17, 2020
Previous Article Next Article

Intrinsically porous molecular building blocks for metal organic frameworks tailored by the bridging effect of counter cations

Author affiliations

Abstract

Predesigned organic linkers have dominated the world of pillared metal organic frameworks to tune the overall morphology, size, and performance of this class of materials. However, the porosity of the framework was never guaranteed due to possible assembly interpenetration and ligand self-closure. Here, we present an interesting construction strategy employing macrocyclic molecular building blocks (MBBs) with intrinsic voids to boost the porosity and host-guest interactions of these hybrid frameworks. In situ co-crystallization of the isolated polyoxomolybdates (P2Mo5O23) and cyclodextrins (CDs) has resulted in seven POM–CD MOFs following this strategy. The bridging effect dictated by the size of counter cations (Na+, K+, and Cs+) can readily tune the structural and performance features of the end frameworks including pore morphology and water stability. This strategy paves the way for the precise design of customized porous materials with built-in macrocyclic hosts for improved molecular recognition of prospective guest molecules.

Graphical abstract: Intrinsically porous molecular building blocks for metal organic frameworks tailored by the bridging effect of counter cations

Back to tab navigation

Supplementary files

Article information


Submitted
15 Mar 2020
Accepted
06 Apr 2020
First published
07 Apr 2020

This article is Open Access

CrystEngComm, 2020,22, 2889-2894
Article type
Communication

Intrinsically porous molecular building blocks for metal organic frameworks tailored by the bridging effect of counter cations

P. Yang, B. Alshankiti and N. M. Khashab, CrystEngComm, 2020, 22, 2889
DOI: 10.1039/D0CE00397B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements