Jump to main content
Jump to site search

Issue 5, 2020

Combining bacteriophage engineering and linear dichroism spectroscopy to produce a DNA hybridisation assay

Author affiliations

Abstract

Nucleic acid detection is an important part of our bio-detection arsenal, with the COVID-19 pandemic clearly demonstrating the importance to healthcare of rapid and efficient detection of specific pathogenic sequences. As part of the drive to establish new DNA detection methodologies and signal read-outs, here we show how linear dichroism (LD) spectroscopy can be used to produce a rapid and modular detection system for detecting quantities of DNA from both bacterial and viral pathogens. The LD sensing method exploits changes in fluid alignment of bionanoparticles (bacteriophage M13) engineered with DNA stands covalently attached to their surfaces, with the read-out signal induced by the formation of complementary duplexes between DNA targets and two M13 bionanoparticles. This new sandwich assay can detect pathogenic material down to picomolar levels in under 1 minute without amplification, as demonstrated by the successful sensing of DNA sequences from a plant virus (Potato virus Y) and an ampicillin resistance gene, ampR.

Graphical abstract: Combining bacteriophage engineering and linear dichroism spectroscopy to produce a DNA hybridisation assay

Supplementary files

Article information


Submitted
25 Jul 2020
Accepted
12 Oct 2020
First published
23 Oct 2020

This article is Open Access

RSC Chem. Biol., 2020,1, 449-454
Article type
Paper

Combining bacteriophage engineering and linear dichroism spectroscopy to produce a DNA hybridisation assay

A. Ali, H. A. Little, J. G. Carter, C. Douglas, M. R. Hicks, D. M. Kenyon, C. Lacomme, R. T. Logan, T. R. Dafforn and J. H. R. Tucker, RSC Chem. Biol., 2020, 1, 449 DOI: 10.1039/D0CB00135J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements