Jump to main content
Jump to site search


From upconversion to thermal radiation: spectroscopic properties of submicron Y2O3: Er3+, Yb3+ ceramic under IR excitation in an extremely broad temperature range

Abstract

Along with the ongoing developments in the field of luminescent thermometry, especially concerning the ratiometric methods, opportunity presents itself to broaden the scope of their application potential. In this work, spectroscopic and temperature sensing properties of Y2O3: 1% Er3+, 20% Yb3+ submicron ceramic were investigated over a wide temperature range. The fluorescence intensity ratio (FIR) between the emission bands corresponding to the 2H11/24I15/2 and 4S3/24I15/2 branches of Er3+ upconversion under 975 nm excitation was evaluated experimentally between 175 K and 895 K. Relative temperature sensitivity of the system at 300 K was established at 1.4 %K-1. This model was subsequently used for the evaluation of magnitude of laser induced heating during the operation of temperature sensing system under varying experimental conditions of ambience (vacuum and air) and laser beam density (focused and defocused) in a function of laser diode power. The outcomes provided insight on the strong impact of aforementioned conditions and yielded technical remarks regarding the proper evaluation of temperature sensing properties, crucial during the initial calibration measurements. For sensing in high temperature range, ratiometry based on Planck’s law was successfully employed to evaluate temperature, extending the measurement range up to ca. 2100 K. The agreement between the Planck-based and fluorescence-based ratiometric temperature readout models used in separate temperature ranges served as cross-validation for both methods. Based on this data, submicron ceramics of yttria co-doped with Yb3+ and Er3+ can be considered as a promising candidate for temperature sensing in a broad range, spanning over nearly two thousand degrees.

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Oct 2019, accepted on 03 Dec 2019 and first published on 04 Dec 2019


Article type: Paper
DOI: 10.1039/C9TC05799D
J. Mater. Chem. C, 2019, Accepted Manuscript

  •   Request permissions

    From upconversion to thermal radiation: spectroscopic properties of submicron Y2O3: Er3+, Yb3+ ceramic under IR excitation in an extremely broad temperature range

    M. Łukaszewicz, R. Tomala and R. Lisiecki, J. Mater. Chem. C, 2019, Accepted Manuscript , DOI: 10.1039/C9TC05799D

Search articles by author

Spotlight

Advertisements