Jump to main content
Jump to site search


C@TiO2 yolk–shell heterostructure for synchronous photothermal–photocatalytic degradation of organic pollutant

Abstract

Environmental contamination, especially water pollution, is acknowledged as one of the most urgent global challenges. In essence, surface reactive oxygen (ROS) is the crucial species in the photocatalytic degradation of organic pollutants in wastewater. Recently, the direct conversion of clean and renewable solar energy into heat to drive the activation process of oxygen is a highly effective and desirable way to use solar energy. However, it still remains a challenge to develop a flexible and versatile method to enhance the efficiency of photocatalysis. Herein, we report a new strategy of designing and constructing a C@TiO2 yolk–shell (YS) heterostructure with excellent photo-thermal conversion ability to achieve highly photo-thermal catalytic degradation of RhB under visible light irradiation, consisting of a tunable hydrothermal carbon spheres (CS) core covered by TiO2 shells. This approach integrates the hetero-interfacial charge carriers management, photothermal excitation of CS core and injection of hot electrons into the TiO2 shells, and leads to reliably boosted hot electrons generation and transfer, and further promotes the activation of dissolved oxygen in water, consequently enhancing the visible light driven catalysis. The YS architecture and photothemal effect interplay of the C@TiO2 heterostructure is comprehensively studied and optimized. Such a YS heterostructure photo-thermocatalyst concept provides a novel approach for effective utilization of solar energy, and coupling with CS photothermal effect in a traditional catalytic process is a promising strategy for large-scale environmental and energy applications.

Back to tab navigation

Publication details

The article was received on 08 Oct 2019, accepted on 23 Nov 2019 and first published on 25 Nov 2019


Article type: Paper
DOI: 10.1039/C9TC05504E
J. Mater. Chem. C, 2019, Accepted Manuscript

  •   Request permissions

    C@TiO2 yolk–shell heterostructure for synchronous photothermal–photocatalytic degradation of organic pollutant

    Y. Li, Q. Shen, R. Guan, J. Xue, X. Liu, H. Jia, B. Xu and Y. Wu, J. Mater. Chem. C, 2019, Accepted Manuscript , DOI: 10.1039/C9TC05504E

Search articles by author

Spotlight

Advertisements