Jump to main content
Jump to site search

Issue 47, 2019
Previous Article Next Article

Photons and charges from colloidal doped semiconductor quantum dots

Author affiliations

Abstract

The utility of colloidal semiconductor quantum dots as a source of photons and charge carriers for photonic and photovoltaic applications has created a large field of research focused on tailoring and broadening their functionality beyond what an exciton can provide. One approach towards expanding the range of characteristics of photons and charge carriers from quantum dots is through doping impurity ions (e.g. Mn2+, Cu+, and Yb3+) in the host quantum dots. In addition to the progress in synthesis enabling fine control of the structure of the doped quantum dots, a mechanistic understanding of the underlying processes correlated with the structure has been crucial in revealing the full potential of the doped quantum dots as the source of photons and charge carriers. In this review, we discuss the recent progress made in gaining microscopic understanding of the photophysical pathways that give rise to unique dopant-related luminescence and the generation of energetic hot electrons via exciton-to-hot electron upconversion.

Graphical abstract: Photons and charges from colloidal doped semiconductor quantum dots

Back to tab navigation

Article information


Submitted
18 Sep 2019
Accepted
23 Oct 2019
First published
04 Nov 2019

J. Mater. Chem. C, 2019,7, 14788-14797
Article type
Review Article
Author version available

Photons and charges from colloidal doped semiconductor quantum dots

T. Qiao, D. Parobek and D. H. Son, J. Mater. Chem. C, 2019, 7, 14788
DOI: 10.1039/C9TC05150C

Social activity

Search articles by author

Spotlight

Advertisements