Jump to main content
Jump to site search

Issue 47, 2019
Previous Article Next Article

Carbon-paste nanocomposites as unconventional gate electrodes for electrolyte-gated organic field-effect transistors: electrical modulation and bio-sensing

Author affiliations

Abstract

Nanocomposite carbon-paste electrodes (NC-CPEs) have been investigated for the first time in electrolyte-gated organic field-effect transistors (EGOFETs) as a replacement of conventional metal gate electrodes, using carbon nanotubes (CNTs) as a model carbon filler. Interestingly, the electrical properties of the resulting devices have been modulated by changing the loading percentage of CNTs within the insulating polymeric matrix. The potential of using such non-conventional gate electrodes for sensing purposes has also been evaluated by investigating, as a proof of concept, the formation of a supramolecular complex between a functionalized CNT-based NC-CPE containing β-cyclodextrin (β-CD) as a bio-recognition element and tryptophan (TRP). This approach, in synergism with the amplification function of an EGOFET, affords a shift in the threshold voltage (VTH) of the transistor, giving promising analytical results with detection limits at picomolar levels (1.0 ± 0.1 pM) as well as a linear response from 10−12 to 10−9 M. Accordingly, NC-CPEs have been demonstrated to be a potential alternative to metal gate electrodes for the development of a new generation of highly sensitive carbon-based EGOFET bio-sensors.

Graphical abstract: Carbon-paste nanocomposites as unconventional gate electrodes for electrolyte-gated organic field-effect transistors: electrical modulation and bio-sensing

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Sep 2019, accepted on 07 Nov 2019 and first published on 11 Nov 2019


Article type: Paper
DOI: 10.1039/C9TC04929K
J. Mater. Chem. C, 2019,7, 14993-14998
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Carbon-paste nanocomposites as unconventional gate electrodes for electrolyte-gated organic field-effect transistors: electrical modulation and bio-sensing

    J. Muñoz, F. Leonardi, T. Özmen, M. Riba-Moliner, A. González-Campo, M. Baeza and M. Mas-Torrent, J. Mater. Chem. C, 2019, 7, 14993
    DOI: 10.1039/C9TC04929K

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements