Issue 46, 2019

NiPS3 nanosheets for passive pulse generation in an Er-doped fiber laser

Abstract

With the rapidly increasing demands of industrial material processing, biomedical sensing, light detection, and high-speed communication, various novel two-dimensional (2D) materials have been synthesized and employed in ultrafast fiber laser generation due to their advantages of easy processing characteristics, desirable structures and excellent nonlinear optical properties. However, finding an efficient 2D material-based saturable absorber (SA) with the capacity of both high stability and excellent working property performance remains a challenge. Herein, high-quality NiPS3 crystals, from the metal phosphorus trichalcogenide (MPT3) family, were synthesized by a modified chemical vapor transport (CVT) method and a few-layer NiPS3 nanosheet SA was easily obtained using a direct liquid-phase exfoliation method. Different from other 2D materials, ultrathin NiPS3 nanosheets display a good stability. Moreover, a passively Q-switched operation and dual-wavelength mode-locked pulse output were proposed based on a NiPS3-SA erbium-doped fiber (EDF) laser. In the passively Q-switched operation, the maximum peak power was 6.40 mW with a maximum pulse energy of 29.66 nJ. It is also worth noting that dual-wavelength pulse output was achieved in passively mode-locked pulse generation. These results not only supply other choices of SAs for pulse generation, but also provide guidance to extend other possible applications of the MPT3 family for nonlinear optics.

Graphical abstract: NiPS3 nanosheets for passive pulse generation in an Er-doped fiber laser

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2019
Accepted
29 Oct 2019
First published
29 Oct 2019

J. Mater. Chem. C, 2019,7, 14625-14631

NiPS3 nanosheets for passive pulse generation in an Er-doped fiber laser

J. Wang, T. Wang, X. Shi, J. Wu, Y. Xu, X. Ding, Q. Yu, K. Zhang, P. Zhou and Z. Jiang, J. Mater. Chem. C, 2019, 7, 14625 DOI: 10.1039/C9TC04722K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements