Jump to main content
Jump to site search

Band alignment in multilayered semiconductor homojunctions supported on metals


To solve the intractable problem of momentum-mismatch in heterojunctions, we propose a universal approach to obtain type II band alignment in two-dimensional (2D) semiconductor homojunctions with wide range momentum-space-match by band-nesting effect. 2D homojunctions are implemented in van der Waals multilayered semiconductors through supporting them on metal surface. There are two advantages in 2D multilayered semiconductor homojunctions (MSHs) than 2D heterojunctions: 1) momentum-matched band alignments are easy to achieve due to the inherent lattice-orientation-match between van der Waals layers of the same 2D material, and moreover, a wide-range momentum-space-match can be obtained by metal-induced Fermi-level movement to achieve ‘parallel’ band edges in degenerately doped MSH; and 2) largely tunable band offsets make band alignment change from Type II to Type III to inversed Type II due to the charge redistribution at the junction interfaces. In addition, we found that 2D MSHs are better to support on 2D metal (e.g. MXene) rather than 3D metal (e.g. Pt), with the advantage of free of metal-induced-gap-states and easily obtained n- and p-type Schottky-barrier-free contacts. Thus, our proposed van der Waals homojunctions, with unexpected excellent properties than heterojunctions, stimulates studies for their various applications.

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Aug 2019, accepted on 01 Nov 2019 and first published on 01 Nov 2019

Article type: Paper
DOI: 10.1039/C9TC04512K
J. Mater. Chem. C, 2019, Accepted Manuscript

  •   Request permissions

    Band alignment in multilayered semiconductor homojunctions supported on metals

    Q. Wang, K. Dou and X. Shi, J. Mater. Chem. C, 2019, Accepted Manuscript , DOI: 10.1039/C9TC04512K

Search articles by author