Jump to main content
Jump to site search


Constructing Spraying-Processed Complementary Smart Windows via Electrochromic Materials with Hierarchical Nanostructures

Abstract

Nanostructured electrochromic materials are commonly explored in electrochromic devices for high coloration efficiency, fast switching speed, and long cycling lifetime; while complementary electrochromic devices comprising anodic and cathodic coloring material are efficient in achieving large optical modulation. However, there is limited success in constructing the complementary electrochromic devices with the nanostructured electrochromic materials for a combination of fast switching speed, high optical contrast, adequate cycling stability, and low manufacturing cost. Herein, we present a facile and efficient strategy to construct low cost complementary smart windows by assembling spraying-processed films of two nanostructured electrochromic materials with similar electrochromic transitions under opposite redox conditions. The resulting device exhibits excellent electrochromic performance, including significant optical modulation of 68% at 660 nm, fast switching speed with 0.5/0.9 s for coloration and bleaching processes, high coloration efficiency of 520 cm2 C-1 and ultrahigh cycling stability over 10,000 cycles. In addition, these nanostructured electrochromic materials are core-shell halloysite nanotubes (HNT) @inherently conducting polymers (ICPs) nanocomposites prepared via a facile chemical oxidation polymerization by using cheap and naturally abundant HNT and commercially available ICP monomers. The related preparation processes (e.g., spray coating) are low-cost and can be conducted at ambient conditions. All these allow the developed materials and smart windows to be readily scaled up for mass production. The developed novel, facile and economical approach in this work for fabricating nanostructured electrochromic materials and spray-coated smart windows with electrochromic hierarchical nanostructures show great potential applications in a variety of engineering and bioengineering areas.

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Aug 2019, accepted on 10 Oct 2019 and first published on 10 Oct 2019


Article type: Communication
DOI: 10.1039/C9TC04204K
J. Mater. Chem. C, 2019, Accepted Manuscript

  •   Request permissions

    Constructing Spraying-Processed Complementary Smart Windows via Electrochromic Materials with Hierarchical Nanostructures

    F. Hu, B. Yan, E. Ren, Y. Gu, S. Lin, L. Ye, S. Chen and H. Zeng, J. Mater. Chem. C, 2019, Accepted Manuscript , DOI: 10.1039/C9TC04204K

Search articles by author

Spotlight

Advertisements