Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 36, 2019
Previous Article Next Article

Enhancing the intermolecular singlet fission efficiency by controlling the self-assembly of amphipathic tetracene derivatives in aqueous solution

Author affiliations

Abstract

Two kinds of nanoparticles of two tetracene derivatives with (PhTc-COOH) or without (PhTc) carboxylic groups are prepared with the re-precipitation method. Scanning electron microscopy and dynamic light scattering experiments reveal different morphologies and sizes of these two kinds of nanoparticles. Furthermore, a stronger intermolecular interaction is achieved in PhTc-COOH nanoparticles than in PhTc nanoparticles as revealed by their steady-state absorption spectra. This is most likely due to the more parallel and closer arrangement of the tetracene molecules in PhTc-COOH nanoparticles driven by the hydrophilic effect of the carboxyl group. Time-resolved fluorescence and ultrafast transient absorption spectra reveal that both PhTc-COOH and PhTc nanoparticles can conduct singlet fission (SF) upon photoexcitation. However, the SF in PhTc-COOH nanoparticles is much faster and more efficient than in PhTc nanoparticles. More importantly, SF mechanisms in these two nanoparticles are different. A charge-transfer (CT) state is identified as an intermediate for the SF in PhTc nanoparticles, while no CT state is detected in the SF process of PhTc-COOH nanoparticles. This work suggests that introduction of supramolecular interaction to tune the arrangement of tetracene molecules in nanoparticles is a useful strategy towards efficient SF. This conclusion might be also applied in other SF molecular systems.

Graphical abstract: Enhancing the intermolecular singlet fission efficiency by controlling the self-assembly of amphipathic tetracene derivatives in aqueous solution

Back to tab navigation

Supplementary files

Article information


Submitted
26 Jul 2019
Accepted
22 Aug 2019
First published
22 Aug 2019

J. Mater. Chem. C, 2019,7, 11090-11098
Article type
Communication

Enhancing the intermolecular singlet fission efficiency by controlling the self-assembly of amphipathic tetracene derivatives in aqueous solution

Z. Tang, S. Zhou, X. Wang, H. Liu, X. Yan, S. Liu, X. Lu and X. Li, J. Mater. Chem. C, 2019, 7, 11090
DOI: 10.1039/C9TC04070F

Social activity

Search articles by author

Spotlight

Advertisements