Jump to main content
Jump to site search


Electrical-Pumping Spasing Action from Cross-Stacked Microwires

Abstract

The realization of electrically pumped lasers at deep sub-micro and nanometer scale operating far beyond the diffraction limit are still a crucial goal in nanophotonics and plasmonics for prospective fundamental research and application. Herein, electrically pumped spasing action was captured from cross-stacked architecture composed of single Ga-doped ZnO microwire (ZnO:Ga MW) crossed with the other ZnO:Ga MW covered by Au nanoparticles. To exploit the spasing ferature, a plasmonic nanocavity could be constructed based on the sandwiched structures, with isolated Au nanoparticles filling the spacer between the crossed MWs. When both the emission regions from the crossed MWs overlapped with each other, the cross-stacked architecture exhibited quasi-Schottky junction behavior, resulting in the formation of tunneling junction. When the injection current exceeded certain values, bright and localizing emissions were observed at the crossed regions, with a sharp peak emerging in the emission spectra. The dominant emission wavelengths centered at 550 nm accompanied by the spectral linewidth rapidly narrowed to 2 nm, suggesting a transition from spontaneous to stimulated emission. The electrically pumped lasing characteristics can be attributed to efficient metal plasmons amplification by the stimulated emission of radiation from Au nanoparticles, which filled the nanocavities. Therefore, this cross-stacked architecture provide a natural route towards electrical injection schemes that can be employed to construct electrical-pumping spasers. This technology also provides a candidate to investigate the fabrication of tunneling diodes.

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Jul 2019, accepted on 29 Jul 2019 and first published on 31 Jul 2019


Article type: Paper
DOI: 10.1039/C9TC03537K
J. Mater. Chem. C, 2019, Accepted Manuscript

  •   Request permissions

    Electrical-Pumping Spasing Action from Cross-Stacked Microwires

    M. Jiang, Z. Li, G. He, J. Ji, C. Shan and D. Shen, J. Mater. Chem. C, 2019, Accepted Manuscript , DOI: 10.1039/C9TC03537K

Search articles by author

Spotlight

Advertisements