Jump to main content
Jump to site search


Improved thermoelectric performance of bilayer Bi2O2Se by band convergence approach

Abstract

Using first-principles calculations combined with Boltzmann transport theory, we investigate the effects of interlayer distance on the electronic and phonon thermal transport properties of the bilayer Bi2O2Se. As the interlayer distance varies from 3.65 to 3.35 Å, the maximum power factor of 13~90 and 10~13 µW cm-1K-2 are found for p-type and n-type doped bilayer Bi2O2Se, respectively. The figure of merit value of p-type doped bilayer Bi2O2Se is enhanced to 1.86 with an interlayer spacing of 3.35 Å at 300 K. At 800 K, it is as high as 5.9, which is much larger than the highest value of 3.35 for Bi2O2Se reported in the literature. This study thus demonstrates that structural dimension reduction and band convergence are effective methods for improving thermoelectric performance of Bi2O2Se.

Back to tab navigation

Publication details

The article was received on 25 Apr 2019, accepted on 14 Aug 2019 and first published on 15 Aug 2019


Article type: Paper
DOI: 10.1039/C9TC02188D
J. Mater. Chem. C, 2019, Accepted Manuscript

  •   Request permissions

    Improved thermoelectric performance of bilayer Bi2O2Se by band convergence approach

    M. Li, N. Wang, M. Jiang, H. Xiao, H. Zhang, Z. Liu, X. Zu and L. Qiao, J. Mater. Chem. C, 2019, Accepted Manuscript , DOI: 10.1039/C9TC02188D

Search articles by author

Spotlight

Advertisements