Issue 30, 2019

A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties

Abstract

Strongly absorbing, thin, wide-bandwidth microwave absorption materials are highly desirable. Meanwhile, sustainable, abundant and low-cost wood with a highly porous 3D structure provides an excellent network and many other benefits, which inspired us to design new absorption materials. In this paper, we employed wood and KMnO4 as precursors to successfully prepare biomass-derived carbon/MnO nanorod (BDC/MnO NR) composites through a low-cost method combining hydrothermal treatment, carbonization and annealing. The minimum reflection loss (RLmin) of the BDC/MnO NR composites was −58.5 dB at a thickness of only 1.65 mm (for BDC, −15.2 dB at 5 mm), and the covered effective absorption bandwidth reached 14.5 GHz (for BDC, 3.4 GHz). The improvement in absorption performance can be attributed to the promotion of the impedance match and attenuation constant. Compared with previously reported similar microwave absorption materials, our products are thinner and have a stronger capacity, indicating that the BDC/MnO NR composites could be promising candidates as high-performance absorbers.

Graphical abstract: A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2019
Accepted
04 Jul 2019
First published
06 Jul 2019

J. Mater. Chem. C, 2019,7, 9219-9228

A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties

P. Hu, S. Dong, X. Li, J. Chen, X. Zhang, P. Hu and S. Zhang, J. Mater. Chem. C, 2019, 7, 9219 DOI: 10.1039/C9TC02182E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements