Enhanced electrocaloric strength of P(VDF-TrFE-CFE) induced by edge-on lamellae†
Abstract
For the past decade, a novel cooling technique based on electrocaloric (EC) materials has been intensively investigated as an environmentally friendly and highly efficient alternative to the conventional vapor-compression refrigeration. Among all the EC materials, relaxor terpolymer P(VDF-TrFE-CFE) has been demonstrated as a promising candidate owing to its large EC effect and superior thermal stability. However, for the terpolymer, the EC strength (represented by EC temperature change under unit electric field (ΔT/E)) is still far from being satisfactory, which limits the mass application of terpolymer as a viable cooling medium in civil applications. Here, an effective method is employed to induce edge-on lamellae into the terpolymer to enhance the EC strength. Owing to the dipolar moments in the edge-on lamellae, which could be rotated more easily in the out-of-plane direction by the electric field, the treated terpolymer with edge-on lamellae exhibits a much enhanced EC strength of 0.13 K m−1 MV−1. Further exploration also shows a significantly decreased coercive field in the treated terpolymer due to the induced edge-on lamellae, and hence larger dipolar-entropy change could be generated at a modest electric field. The results indicate that a relaxor-like β-phase may also contribute to the enhanced polarizability. More importantly, the terpolymer with edge-on lamellae exhibits high thermal stability within a broad temperature range near room temperature. This work emphasizes the critical role of crystal structure on the macroscopic properties of electrocaloric polymers.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        