Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



AgNPs Decorated Mg-Doped ZnO Heterostructure with Dramatic SERS Activity for Trace Detection Food Contaminants

Abstract

Compared with noble metals, semiconductors have been gradually exploited as another type of SERS substrate materials due to their distinctive advantages. However, an inferior enhancement factor (EF) is a fatal weakness of the semiconductors. So we combined the strong LSPR coupling between Ag particles and the charge transport channels induced by Mg doping to create a high performance SERS substrate. This magnesium-doped zinc oxide-Ag nanoparticles (ZMOA) exhibited 18 times higher SERS enhancement than that when the SERS spectra of 4-MPY were collected on the Ag, 30 times higher than magnesium-doped zinc oxide (ZMO), 121 times higher than ZnO. The formation mechanism and the enhancement mechanism of this substrate was meticulously analyzed, and finite difference time domain simulations were used to examine “hot spot” distribution. By using the ZMOA, we can easily to achieve the detection limit for malachite green (MG) residue was as low as 10-13 M, with a good linear relationship (R2 = 0.9914) between the intensity of the SERS signal and the logarithm of the MG concentration indicates the potential application of the ZMOA substrate in quantitative determination. Meanwhile, we employed the proposed ZMOA substrate and established analytical method for quantitative determination of the residue of MG in fish. The excellent reproducibility, long-term stability, and accuracy of detection make ZMOA as a promising substrate for practical detection of contaminants. To the best of our knowledge, this is the first time to observe the remarkable SERS activity within the hybrid semiconductor, which could open a new frontier for developing highly sensitive and stable SERS technology and has great potential applications in the areas of pesticide residue monitoring, food security, and biotechnology.

Back to tab navigation

Supplementary files

Publication details

The article was received on 28 Dec 2018, accepted on 13 May 2019 and first published on 17 May 2019


Article type: Paper
DOI: 10.1039/C8TC06588H
J. Mater. Chem. C, 2019, Accepted Manuscript

  •   Request permissions

    AgNPs Decorated Mg-Doped ZnO Heterostructure with Dramatic SERS Activity for Trace Detection Food Contaminants

    J. Yao, Y. Quan, M. Gao, R. Gao, L. Chen, Y. Liu, J. Lang, H. Shen, Y. Zhang, L. Yang and J. Yang, J. Mater. Chem. C, 2019, Accepted Manuscript , DOI: 10.1039/C8TC06588H

Search articles by author

Spotlight

Advertisements