Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 10, 2019
Previous Article Next Article

Lead-free hybrid ferroelectric material based on formamidine: [NH2CHNH2]3Bi2I9

Author affiliations


The extraordinary thermal stability of [NH2CHNH2]3Bi2I9 (FA3Bi2I9) crystals, up to around 600 K, has been enhanced by using the evaporating method. DSC measurements have revealed reversible structural phase transitions: at 203 K (Phase I → Phase II), 173 K (II → III), 134.7 K (III → IV), 131.4 K (IV → V), and 120 K (V → VI). The crystal structures of FA3Bi2I9 adopt the polar space groups P63mc at 220 K (Phase I) and Cmc21 at 190 K (Phase II). The pyroelectric current (Ipyr) measured in the temperature range covering all the phases of FA3Bi2I9 confirmed their polar nature. The reversibility of the spontaneous polarization in each phase has been confirmed by the observed hysteresis loops. All the phase transitions are dielectrically active. The dielectric response (ε*(ω,T) close to 134.7 and 131.4 K) is characteristic of ferroelectrics with a critical slowing-down process. Optical bandgaps estimated from the UV-vis measurements and calculated using the DFT method are equal to 1.85 and 1.89 eV, respectively. On the basis of the structural, dielectric, and spectroscopic results, the molecular mechanisms of the phase transitions have been proposed.

Graphical abstract: Lead-free hybrid ferroelectric material based on formamidine: [NH2CHNH2]3Bi2I9

Back to tab navigation

Supplementary files

Article information

21 Dec 2018
04 Feb 2019
First published
04 Feb 2019

J. Mater. Chem. C, 2019,7, 3003-3014
Article type

Lead-free hybrid ferroelectric material based on formamidine: [NH2CHNH2]3Bi2I9

P. Szklarz, A. Gągor, R. Jakubas, P. Zieliński, A. Piecha-Bisiorek, J. Cichos, M. Karbowiak, G. Bator and A. Ciżman, J. Mater. Chem. C, 2019, 7, 3003
DOI: 10.1039/C8TC06458J

Social activity

Search articles by author