Jump to main content
Jump to site search


Photoluminescence properties and energy transfer in a novel Sr8ZnY(PO4)7:Tb3+,Eu3+ phosphor with high thermal stability and its great potential for application in warm white light emitting diodes

Author affiliations

Abstract

Terbium and europium co-doped Sr8ZnY(PO4)7 phosphors are successfully prepared through a high temperature solid-state reaction (SSR). The crystal structure of the as-prepared samples was identified to be Sr8ZnY(PO4)7 (SZYP) pure phase by an X-ray powder diffraction technique. Under near-ultraviolet light excitation (378 nm), the SZYP:Tb3+ and SZYP:Eu3+ phosphors show green and red emission peaking at 545 and 618 nm, respectively. Moreover, an effective energy transfer process from Tb3+ to Eu3+ could be verified by the concentration dependence of emission intensity and lifetime. The energy transfer mechanism between Tb3+ and Eu3+ is determined to be governed by dipole–dipole interactions. The internal quantum efficiency (IQE) is evaluated to be as high as about 91%. The temperature-dependent spectra indicate that the SZYP:Tb3+,Eu3+ phosphor shows a high thermal stability. Furthermore, the as-fabricated white LED devices exhibit an excellent correlated color temperature (CCT) of 3223 K, a color rendering index (Ra) of 85.8 and a luminance efficiency of 37.4 lm W−1. All results imply that the SZYP:Tb3+,Eu3+ phosphors have a great potential for application in white LEDs.

Graphical abstract: Photoluminescence properties and energy transfer in a novel Sr8ZnY(PO4)7:Tb3+,Eu3+ phosphor with high thermal stability and its great potential for application in warm white light emitting diodes

Back to tab navigation

Publication details

The article was received on 10 Dec 2018, accepted on 29 Jan 2019 and first published on 30 Jan 2019


Article type: Paper
DOI: 10.1039/C8TC06235H
Citation: J. Mater. Chem. C, 2019, Advance Article

  •   Request permissions

    Photoluminescence properties and energy transfer in a novel Sr8ZnY(PO4)7:Tb3+,Eu3+ phosphor with high thermal stability and its great potential for application in warm white light emitting diodes

    M. Xia, X. Wu, Y. Zhong, H. T. (. Hintzen, Z. Zhou and J. Wang, J. Mater. Chem. C, 2019, Advance Article , DOI: 10.1039/C8TC06235H

Search articles by author

Spotlight

Advertisements