Jump to main content
Jump to site search

Issue 2, 2019
Previous Article Next Article

Growth, morphology and structure of mixed pentacene films

Author affiliations


Thin films of pentacene and p-terphenyl were grown via organic molecular beam deposition to enable solid-state dilution of functional molecules (pentacene) in an inert matrix (p-terphenyl) at higher concentrations than permitted by traditional crystal growth methods, such as melts. Growth rates were first optimised for single component films to ensure a precise control over the dopant/host concentrations when the mixed films were deposited. Both thin film and bulk phases can be identified in pentacene growths, with the precise lattice parameters dependent on the deposition rates. The effect on the microstructure, resulting from progressive dilution of pentacene in a p-terphenyl host, was then investigated. Although disorder increases and the crystallite size decreases in the mixture, with a minimum at a 1 : 1 ratio, phase segregation is not observed on the length scale (limit) that can be probed in our measurements. This indicates that the mixed films form homogeneous solid-solutions that may be employed for the investigation of solid-state phenomena. Our methodology can be extended to other compatible host-dopant systems used in optoelectronic and spintronic devices.

Graphical abstract: Growth, morphology and structure of mixed pentacene films

Back to tab navigation

Supplementary files

Article information

02 Nov 2018
30 Nov 2018
First published
07 Dec 2018

J. Mater. Chem. C, 2019,7, 289-296
Article type

Growth, morphology and structure of mixed pentacene films

D. Lubert-Perquel, D. K. Kim, P. Robaschik, C. W. M. Kay and S. Heutz, J. Mater. Chem. C, 2019, 7, 289
DOI: 10.1039/C8TC05525D

Social activity

Search articles by author