Jump to main content
Jump to site search


Dual nature of exciplexes: exciplex-forming properties of carbazole and fluorene hybrid trimers

Author affiliations

Abstract

Two exciplexes were detected for the first time for the known exciplex-forming system consisting of electron donating 1,3-bis(N-carbazolyl)benzene and electron accepting 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine. Exploiting thermal treatment, sky-blue (high-energy) and orange (low-energy) exciplexes were observed for a solid-state mixture of the compounds under electrical excitation. Similarly, stable high-energy and low-energy exciplexes were observed for new exciplex-forming systems consisting of 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine and one of four selected carbazole and fluorene hybrid trimers as donors. The high-energy exciplexes were observed when there was a small energy barrier between the locally excited state and the high-energy exciplex state. A large energy barrier between the locally excited state and the low-energy exciplex state was the reason that the dual nature of exciplexes was not discovered yet. Emission of both exciplexes was observed in electroluminescence spectra of exciplex-interface based devices using developed exiplex-forming systems as emitters. Observed under optical and electrical excitations, the low-energy exciplexes were separated using thermal treatment of the studied exciplex-forming systems. The exciplex-forming system consisting of 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine and 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole, which exhibits thermally activated delayed fluorescence, showed the best performance in organic light-emitting diodes (OLEDs) based on interface and volume exciplex emitters. The best device showed maximum external quantum and maximum current efficiencies of 18% and 54 cd A−1 respectively. Additionally, white OLEDs were fabricated exploiting sky-blue and orange emissions from a single exciplex-forming system. Our findings provide evidence of the dual nature of exciplexes and pave the way towards design of new exciplex-forming systems with high photoluminescence quantum yields and efficient exciplex-based devices.

Graphical abstract: Dual nature of exciplexes: exciplex-forming properties of carbazole and fluorene hybrid trimers

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Sep 2018, accepted on 06 Nov 2018 and first published on 06 Nov 2018


Article type: Communication
DOI: 10.1039/C8TC04708A
Citation: J. Mater. Chem. C, 2019, Advance Article
  •   Request permissions

    Dual nature of exciplexes: exciplex-forming properties of carbazole and fluorene hybrid trimers

    M. Guzauskas, D. Volyniuk, A. Tomkeviciene, A. Pidluzhna, A. Lazauskas and J. V. Grazulevicius, J. Mater. Chem. C, 2019, Advance Article , DOI: 10.1039/C8TC04708A

Search articles by author

Spotlight

Advertisements