Issue 3, 2020

Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis

Abstract

Mitochondria-targeted nanoparticles, such as liposomes, polymers and inorganic particles, suffer from heterogeneity, low biocompatibility and low drug loading efficiency. Here, we present a novel delivery platform based on tetrahedral DNA nanostructures (TDNs) that enable the mitochondrial transportation of the anticancer drug doxorubicin (DOX) for cancer therapy. In our design, DOX was intercalated into TDNs, which executed the cell-killing function inside the tumor cells. Various numbers of D-(KLAKLAK)2 (KLA) were conjugated to TDNs to achieve the mitochondria targeting effect. The mean size of the KLA-modified TDNs was about 15 nm, and the TDNs were stable in FBS. The DOX loading efficiency of the TDNs was up to around 77%. The 3KLA-modified TDNs exhibited the most efficient DOX accumulation in mitochondria, leading to an effective release of cytochrome c, and the upregulated expression levels of caspase-9, caspase-3, p21 and p53. Meanwhile, 3KLA-TDNs/DOX elevated the pro-apoptotic Bax, reduced the anti-apoptotic Bcl-2 protein expression and increased the Bax/Bcl-2 ratio, which finally activated the mitochondria-mediated, programmed apoptosis pathway to enhance the anticancer efficacy in vitro. This 3KLA-TDN and DOX co-assembling strategy can be further developed to transport other anthracyclines and chemotherapeutic agents for enhanced apoptosis effects.

Graphical abstract: Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2019
Accepted
25 Nov 2019
First published
27 Nov 2019

J. Mater. Chem. B, 2020,8, 492-503

Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis

J. Yan, J. Chen, N. Zhang, Y. Yang, W. Zhu, L. Li and B. He, J. Mater. Chem. B, 2020, 8, 492 DOI: 10.1039/C9TB02266J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements