Jump to main content
Jump to site search


g-C3N4 nanosheets-based ratiometric fluorescent probe for the amplification and imaging of miRNA in living cells

Abstract

Fundamental understanding of microRNA (miRNA) regulated cellular processes requires smart tools capable of imaging the expression and distribution of miRNAs in living cells. However, low-expression of miRNA and complex intracellular environment bring great challenges for intracellular miRNA imaging. We found that boron doped g-C3N4 nanosheets (BCNNS) is capable of binding copper nanoclusters (CuNCs)-labeled hairpin DNA and quench the fluorescence of CuNCs. A turn-on fluorescent sensor for the detection of miR-582-3p in living cells is thus developed based on the affinity change of BCNNS and DNA probes upon their recognition to the target. Ratiometric fluorescent measurement is achieved by taking advantage of the inherent fluorescence emission of BCNNS as the cell interior label. By combing the hybridization chain reaction (HCR) amplification and inherent sensitivity of turn-on fluorescent sensing strategy, this approach gives rise to a limit of detection (LOD) of 49 fmol L-1 for miR-582-3p, within a linear range of 0.2-1 pmol L-1. The LOD is further improved to 12 fmol L-1 with correlation to ICP-MS by measuring 63Cu isotope. With the merit of high sensitivity and selectivity of HCR and the anti-interfering capability of ratiometric fluorescent probe, the single cell miR-582-3p expression levels are successfully detected, which indicated that this assay provides a sensitive and enzyme-free approach for miRNA imaging in living cells.

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Sep 2019, accepted on 30 Oct 2019 and first published on 04 Nov 2019


Article type: Paper
DOI: 10.1039/C9TB02021G
J. Mater. Chem. B, 2019, Accepted Manuscript

  •   Request permissions

    g-C3N4 nanosheets-based ratiometric fluorescent probe for the amplification and imaging of miRNA in living cells

    Y. Wang, N. Wu, F. Guo, R. Gao, T. Yang and J. Wang, J. Mater. Chem. B, 2019, Accepted Manuscript , DOI: 10.1039/C9TB02021G

Search articles by author

Spotlight

Advertisements