Issue 1, 2020

In situ derivatization of Au nanoclusters via aurophilic interactions of a triphenylphosphine gold(i) salt with neurotransmitters and their rapid MALDI-TOF-MS detection in mice brain tissue extracts

Abstract

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) has attracted much attention for the detection of small molecules such as neurotransmitters due to its softness, high sensitivity, extensive compatibility and diverse mass analyzers. However, it has been really a difficult challenge to develop a highly specific organic compound as a matrix for the rapid, sensitive and selective detection of neurotransmitters. Herein, we report tris(triphenylphosphine)gold oxonium tetrafluoroborate ([Ph3PAu]3O+BF4) for the first time as an efficient matrix for the rapid and simultaneous MALDI-MS detection of neurotransmitters. [Ph3PAu]3O+BF4 facilitates the in situ derivatization of gold nanoclusters (Au NCLs) during the interaction with neurotransmitters, which increases their ionization energy by absorbing more ultra-violet (UV) radiation during MALDI-TOF-MS detection. The results show that this [Ph3PAu]3O+BF4 matrix can exhibit a 10-fold faster response time compared to previously reported pyrylium matrices. In addition, [Ph3PAu]3O+BF4 can also provide the simultaneous derivatization of various neurotransmitters, including dopamine (DA), noradrenaline (NAd), serotonin (5-HT), γ-aminobutyric acid (GABA), histamine (H) and tyramine (TY), in mice brain tissue extracts, which can be detected in the MALDI-TOF-MS spectra.

Graphical abstract: In situ derivatization of Au nanoclusters via aurophilic interactions of a triphenylphosphine gold(i) salt with neurotransmitters and their rapid MALDI-TOF-MS detection in mice brain tissue extracts

Supplementary files

Article information

Article type
Paper
Submitted
22 Aug 2019
Accepted
30 Oct 2019
First published
04 Nov 2019

J. Mater. Chem. B, 2020,8, 38-44

In situ derivatization of Au nanoclusters via aurophilic interactions of a triphenylphosphine gold(I) salt with neurotransmitters and their rapid MALDI-TOF-MS detection in mice brain tissue extracts

S. Palanisamy, S. Huang, H. Zhao, D. Zhu and X. Zhang, J. Mater. Chem. B, 2020, 8, 38 DOI: 10.1039/C9TB01800J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements