Jump to main content
Jump to site search

Issue 40, 2019
Previous Article Next Article

Smart supramolecular gels of enolizable amphiphilic glycosylfuran

Author affiliations

Abstract

The implementation of a novel approach in the development of stimuli responsive supramolecular gels is an important objective that challenges material chemists and biologists in order to access an exclusively new category of smart materials. In this report, non-toxic, bio-based amphiphilic glycosylfurans were designed and synthesized using a biocatalyst, Novozyme 435, an immobilized lipase B from Candida antarctica. The self-assembly of these compounds generated oleogels and hydrogels. To our delight, these bio-based amphiphilic glycosylfurans furnished an in situ stimuli responsive hydrogel with simultaneous encapsulation of various biologically relevant molecules and ions. For the first time we are reporting hydrogelation via in situ molecular tuning followed by a self-sorting mechanism. The sol-to-gel transition in the reported smart hydrogel was observed by the addition of acidic buffer of pH 4.0, which could be potentially used for the stimuli responsive delivery of a signalling molecule, H2S and other biomolecules that regulate many physiological and pathological processes.

Graphical abstract: Smart supramolecular gels of enolizable amphiphilic glycosylfuran

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Jul 2019, accepted on 16 Sep 2019 and first published on 18 Sep 2019


Article type: Paper
DOI: 10.1039/C9TB01480B
J. Mater. Chem. B, 2019,7, 6238-6246

  •   Request permissions

    Smart supramolecular gels of enolizable amphiphilic glycosylfuran

    A. Thamizhanban, K. Lalitha, G. P. Sarvepalli, C. U. Maheswari, V. Sridharan, J. B. B. Rayappan and S. Nagarajan, J. Mater. Chem. B, 2019, 7, 6238
    DOI: 10.1039/C9TB01480B

Search articles by author

Spotlight

Advertisements