Jump to main content
Jump to site search


Intracellular transglutaminase-catalyzed polymerization and assembly for bioimaging of hypoxic neuroblastoma cells

Abstract

Hypoxia is an indicative feature of human neuroblastoma solid tumor. Bioimaging of hypoxic neuroblastoma cells will be beneficial in tracing and locating the tumor in vivo. In this work, we developed a hypoxic neuroblastoma cell imaging probe based on the mechanism of transglutaminase 2 (TG2)-catalyzed polymerization of fluorescence molecule-labeled peptide monomers and intracellular self-assembly of polymerized elastin-like polypeptides (ELPs) specifically in hypoxic neuroblastoma cells. The key influence parameters, namely, thermosensitivity, molecular weight, and upper critical solution temperature, for TG2-catalyzed polymerization into ELPs were discussed. More than 25 repeat units of ELPs were obtained with optimized TG2-catalyzed polymerization. The intracellular polymerization and assembly generated assembly/aggregation-induced retention effect specifically in TG2-overexpressed cells (e.g., HeLa) with over 55% retention efficiency up to 24 h. Based on the up-regulation of TG2 expression under hypoxic conditions, our probe can selectively light hypoxic neuroblastoma cells rather than normoxic cells. Our strategy offers useful imaging probes to further study the mechanism of invasion and metastasis of hypoxic brain tumor in vivo with cell tracing and imaging functions.

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Jun 2019, accepted on 09 Aug 2019 and first published on 13 Aug 2019


Article type: Paper
DOI: 10.1039/C9TB01227C
J. Mater. Chem. B, 2019, Accepted Manuscript

  •   Request permissions

    Intracellular transglutaminase-catalyzed polymerization and assembly for bioimaging of hypoxic neuroblastoma cells

    B. Peng, X. Zhao, M. Yang and L. Li, J. Mater. Chem. B, 2019, Accepted Manuscript , DOI: 10.1039/C9TB01227C

Search articles by author

Spotlight

Advertisements