Jump to main content
Jump to site search


Preventing fungal growth on heritage paper with antifungal and cellulase inhibiting magnesium oxide nanoparticles

Author affiliations

Abstract

Microorganisms such as bacteria, fungi, algae and moulds are highly proficient at colonizing artistic and architectural heritage. The irreparable damage they cause to unique artefacts results in immeasurable cultural and societal losses to our shared cultural heritage, which represent an important social and economic resource for Europe. With the overall aim of preventing fungal deterioration of paper artefacts, we report the use of magnesium oxide nanoparticles (MgO NPs) of average diameter 12 nm as potent antifungal agents against fungi commonly found colonising paper heritage: A. niger, C. cladosporioides and T. reesei. Dispersions of MgO NPs on original 18th century paper samples from the Archives of the Spanish Royal Botanic Garden were effective at preventing fungal colonisation without altering the appearance of the paper artefacts. Importantly, MgO NPs also inhibit cellulase activity in the filamentous fungi T. resei and A. niger, two of the principle biodeteriogens of cellulosic materials. In addition, our report provides three simple new procedures for studying the fungal colonisation prevention properties of nanomaterials on paper samples. Overall this opens the door to the use of colourless, low-cost, and scalable nanomaterials for preventing biodeterioration in cellulose-based artefacts.

Graphical abstract: Preventing fungal growth on heritage paper with antifungal and cellulase inhibiting magnesium oxide nanoparticles

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 May 2019, accepted on 20 Jun 2019 and first published on 20 Jun 2019


Article type: Paper
DOI: 10.1039/C9TB00992B
J. Mater. Chem. B, 2019, Advance Article

  •   Request permissions

    Preventing fungal growth on heritage paper with antifungal and cellulase inhibiting magnesium oxide nanoparticles

    I. Franco Castillo, E. García Guillén, J. M. de la Fuente, F. Silva and S. G. Mitchell, J. Mater. Chem. B, 2019, Advance Article , DOI: 10.1039/C9TB00992B

Search articles by author

Spotlight

Advertisements