Jump to main content
Jump to site search


Fabrication of PMPC/PTM/PEGDA micropatterns onto polypropylene films behaving with dual functions of antifouling and antimicrobial activities

Author affiliations

Abstract

Polymer materials with high biocompatibility and versatile functions are urgently required in the biomedical field. The hydrophobic surface and inert traits of polymer materials usually encounter severe biofouling and bacterial infection which hinder the potential application of polymers as biomedical materials. Although many antifouling or antimicrobial coatings have been developed for modification of biomedical devices/implants, few can simultaneously fulfill the requirements for antimicrobial and antifouling activities. Herein, we constructed bifunctional micropatterns with antifouling and antimicrobial properties onto polypropylene (PP) films using argon plasma activation treatment, photomask technique and UV-initiated graft polymerization method. Different sizes of PMPC/PTM/PEGDA micropatterns were fabricated on PP films to yield patterned PP–PMPC/PTM/PEGDA as evidenced by infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), where PMPC is poly(2-methacryloyloxyethyl phosphorylcholine) for enhancement of hydrophilicity and biocompatibility, PTM is poly(methacryloyloxyethyltrimethylammonium chloride) for contribution to antimicrobial activity and PEGDA is poly(ethylene glycol diacrylate) as the crosslinker. The surface hydrophilicity of patterned PP–PMPC/PTM/PEGDA was characterized by the static water contact angle test. The results showed that the PP sample with a micropattern with the size of 5 μm exhibited the best hydrophilicity. For biological assays of patterned PP–PMPC/PTM/PEGDA, the micropattern size at 5 μm performed the best for both antiplatelet adhesion and antimicrobial activities. We anticipate that this work could provide a new method for building bifunctional biomedical materials to promote the application of PP in biomedical fields.

Graphical abstract: Fabrication of PMPC/PTM/PEGDA micropatterns onto polypropylene films behaving with dual functions of antifouling and antimicrobial activities

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 May 2019, accepted on 08 Jul 2019 and first published on 10 Jul 2019


Article type: Paper
DOI: 10.1039/C9TB00927B
J. Mater. Chem. B, 2019, Advance Article

  •   Request permissions

    Fabrication of PMPC/PTM/PEGDA micropatterns onto polypropylene films behaving with dual functions of antifouling and antimicrobial activities

    L. Jiang, W. Zhu, H. Qian, C. Wang, Y. Chen and P. Liu, J. Mater. Chem. B, 2019, Advance Article , DOI: 10.1039/C9TB00927B

Search articles by author

Spotlight

Advertisements