Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality

Abstract

Gold nanoparticles (Au NPs) are arguably the most versatile nanomaterials reported to date. Recent advances in nanofabrication and chemical synthesis have expanded the scope of Au NPs from classical homogeneous nanospheres to a wide range of hybrid nanostructures with programmable size, shape, and composition. Novel physiochemical properties can be achieved via design and engineering of the hybrid nanostructures. In this review we discuss the recent progress in the development of complex hybrid Au NPs and propose a classification framework based on three fundamental structural dimensions (length scale, complexity and symmetry) to aid categorising, comparing and designing various types of Au NPs. Their novel functions and potential for biomedical applications will also be discussed, featuring point-of-care diagnostics by advanced optical spectroscopy and assays, as well as minimally invasive surgeries and targeted drug delivery using multifunctional nano-robots.

Back to tab navigation

Publication details

The article was received on 21 Mar 2019, accepted on 14 May 2019 and first published on 14 May 2019


Article type: Review Article
DOI: 10.1039/C9TB00557A
J. Mater. Chem. B, 2019, Accepted Manuscript
  • Open access: Creative Commons BY license
  •   Request permissions

    Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality

    H. Jeong, E. Choi, E. Ellis and T. Lee, J. Mater. Chem. B, 2019, Accepted Manuscript , DOI: 10.1039/C9TB00557A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements