Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Lysosome-specific sensing and imaging of pH variations in vitro and in vivo utilizing a near-infrared boron complex

Author affiliations

Abstract

As a focus issue, the study of lysosomal pH has attracted much attention as it is closely associated with the state of lysosome, which plays a vital role in endocytosis and autophagy. In order to investigate the lysosomal pH, fluorescence bioimaging is one of the most widely-explored approaches. Unfortunately, the probes are insufficient to absorb or emit in the near-infrared (NIR) region, which could minimize photodamage to organisms and maximize tissue penetration in living systems. As a novel family of NIR dyes, hemicyanine has been selected for NIR bioimaging and biosensing owing to its excellent optical properties, easy preparation and good biocompatibility. Employing a classic rhodamine–hemicyanine hybrid, we first designed and synthesized a NIR boron complex (HCy-BIZ-BF2) with lysosome-targeting and pH-sensing properties. It is worth mentioning that after HCy-BIZ was coordinated with boron fluoride, HCy-BIZ-BF2 exhibited an improved photostability as well as an enlarged Stokes shift, and was subsequently applied to monitor the lysosomal pH in cells stimulated with chloroquine. Further investigation of pH changes in mice illustrated that HCy-BIZ-BF2 performed well in detecting the pH in living organisms. Therefore, this concept of boron complex derived from hemicyanine is not only applicable in pH detection, but also conducive for preparing promising novel NIR bioprobes and obtaining precise measurements of physiological parameters in specific physiological processes.

Graphical abstract: Lysosome-specific sensing and imaging of pH variations in vitro and in vivo utilizing a near-infrared boron complex

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Dec 2018, accepted on 19 Apr 2019 and first published on 26 Apr 2019


Article type: Paper
DOI: 10.1039/C8TB03353F
J. Mater. Chem. B, 2019, Advance Article

  •   Request permissions

    Lysosome-specific sensing and imaging of pH variations in vitro and in vivo utilizing a near-infrared boron complex

    Y. Shi, X. Meng, H. Yang, L. Song, S. Liu, A. Xu, Z. Chen, W. Huang and Q. Zhao, J. Mater. Chem. B, 2019, Advance Article , DOI: 10.1039/C8TB03353F

Search articles by author

Spotlight

Advertisements