Issue 9, 2019

A water-soluble two-dimensional supramolecular organic framework with aggregation-induced emission for DNA affinity and live-cell imaging

Abstract

A water-soluble two-dimensional supramolecular organic framework (2D SOF) was prepared via self-assembly of cucurbit[8]uril (CB[8]) and a three-arm flat linker molecule, which contains a benzene ring as the core and three Brooker's merocyanine (BM) analogs as arms. The strong host–guest interactions between BM and CB[8] and the directional head-to-tail stacking modes between the BM arms synergistically led to the formation of a 2D SOF. The structure of the 2D SOF was verified by 1H NMR, 2D 1H NMR NOESY, and DLS characterizations, while the monolayer structure was characterized by Cryo-TEM and AFM measurements. The 2D SOF exhibited an obvious AIE enhancement effect in H2O. In addition, DNA induced photoluminescence enhancement was observed for the monomer. As a result, this AIEgen-based 2D SOF could feature not only as a cell visualizer but also as a tracker for the nucleus in biological imaging due to the dynamic assembly process.

Graphical abstract: A water-soluble two-dimensional supramolecular organic framework with aggregation-induced emission for DNA affinity and live-cell imaging

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2018
Accepted
15 Jan 2019
First published
15 Jan 2019

J. Mater. Chem. B, 2019,7, 1435-1441

A water-soluble two-dimensional supramolecular organic framework with aggregation-induced emission for DNA affinity and live-cell imaging

H. Liu, Z. Zhang, Y. Zhao, Y. Zhou, B. Xue, Y. Han, Y. Wang, X. Mu, S. Zang, X. Zhou and Z. Li, J. Mater. Chem. B, 2019, 7, 1435 DOI: 10.1039/C8TB03206H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements