Jump to main content
Jump to site search

Issue 44, 2019
Previous Article Next Article

A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals

Author affiliations

Abstract

While the high energy density of lithium metal has long been a strong driver for the development of lithium metal batteries, harnessing the full theoretical capacity in a safe, practical device requires significant advances in electrolyte design. The use of quasi-solid state electrolytes can be greatly beneficial for increasing safety, suppressing the growth of lithium dendrites and prolonging cell lifetime. Organic ionic plastic crystals (OIPCs) are a unique class of disordered solid that can support high ionic conductivities and lithium ion mobility. Until recently, OIPCs were used primarily as matrix materials and incorporated only low dopant concentrations of lithium salts. Here we report a very high lithium content electrolyte containing 90 mol% lithium bis(fluorosulfonyl)imide, Li[FSI], combined with 10 mol% of a conductive pyrrolidinium FSI-based OIPC. The resultant quasi-solid state electrolyte achieves a conductivity of 0.24 mS cm−1 at 30 °C, supports stable lithium electrochemistry and has a very good lithium ion transference number of 0.68. Symmetrical Li|Li cell cycling is demonstrated at 0.1 mA cm−2 for 100 hours. This showcases a new approach for designing safer quasi-solid state electrolytes with high lithium content and excellent electrochemical and transport properties.

Graphical abstract: A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Jun 2019, accepted on 18 Oct 2019 and first published on 28 Oct 2019


Article type: Paper
DOI: 10.1039/C9TA11175A
J. Mater. Chem. A, 2019,7, 25389-25398
  • Open access: Creative Commons BY license
  •   Request permissions

    A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals

    D. Al-Masri, R. Yunis, H. Zhu, L. Jin, P. Bruce, A. F. Hollenkamp and J. M. Pringle, J. Mater. Chem. A, 2019, 7, 25389
    DOI: 10.1039/C9TA11175A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements