Issue 48, 2019

Light enhanced moisture degradation of perovskite solar cell material CH3NH3PbI3

Abstract

To understand the light enhanced moisture degradation of CH3NH3PbI3 (MAPbI3) material, we carry out a series of first principles calculations and find the decisive role played by the giant photostriction effect. The photostriction effect in MAPbI3 material changes the charge distribution and thus the bonding interactions between atoms. This effect enhances the adsorption and penetration of H2O molecules nearby the MAPbI3 surface after the above band gap illumination, which is ascribed to the alternation of bonding interactions between MA molecules, H2O molecules and PbI networks. Owing to the straightening of the PbI networks induced by the photostriction effect, the band gap of MAPbI3 decreases, leading to more photon absorption and thus self-accelerated photostriction processes. Hence the photostriction effect could accelerate the moisture decomposition of MAPbI3 perovskite under illumination. Therefore, to develop perovskite solar cells with strong moisture resistance, an effective strategy is to develop perovskite materials with no or a minor photostriction effect.

Graphical abstract: Light enhanced moisture degradation of perovskite solar cell material CH3NH3PbI3

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2019
Accepted
09 Nov 2019
First published
11 Nov 2019

J. Mater. Chem. A, 2019,7, 27469-27474

Light enhanced moisture degradation of perovskite solar cell material CH3NH3PbI3

Y. Lu, W. Cong, C. Guan, H. Sun, Y. Xin, K. Wang and S. Song, J. Mater. Chem. A, 2019, 7, 27469 DOI: 10.1039/C9TA10443G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements