Jump to main content
Jump to site search


Metallic State Two-dimensional Holey-Structured Co3FeN Nanosheets as Stable and Bifunctional Electrocatalysts for Zinc-Air Batteries

Abstract

Exploring economically efficient electrocatalysts with robust bifunctional oxygen conversion catalytic activity and designing appropriate structures are essential to realize ideal zinc-air batteries with high energy density and long lifespan. Two-dimensional metallic state Co3FeN nanosheets with holey-structured architecture are designed and shown to exhibit enhanced catalytic properties owing to the complete exposure of the atoms in the large lateral surfaces and in the edges of pore areas, together with the lowest OH* adsorption energy on exposed surfaces from bimetallic synergistic effects. Meanwhile, this porous architecture can not only accelerate electron transportation by its metallic state highly-orientated crystallized structure, but also facilitates the diffusion of intermediates and gases. These edge-enriched 2D holey Co3FeN nanosheets exhibit enhanced catalytic activity towards oxygen reversible conversion. When employed in zinc-air battery, it possesses a maximum power density of 108 mW cm-2 and cycle life up to 900 cycles with a low round-trip voltage of 0.84 V. The Co3FeN nanosheets keep a strong stable structure in an oxygen-rich electrochemical environment with high-orientation crystalline texture during the whole cycling time. This work may provide a promising candidate to promote the further development of zinc-air batteries.

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Sep 2019, accepted on 06 Nov 2019 and first published on 07 Nov 2019


Article type: Paper
DOI: 10.1039/C9TA10079B
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    Metallic State Two-dimensional Holey-Structured Co3FeN Nanosheets as Stable and Bifunctional Electrocatalysts for Zinc-Air Batteries

    H. Guo, X. Gao, N. Yu, Z. Zheng, W. Luo, C. Wu, H. Liu and J. Wang, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA10079B

Search articles by author

Spotlight

Advertisements