Jump to main content
Jump to site search


Na2.3Cu1.1Mn2O7-δ nanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach

Abstract

Sodium-ion batteries (SIBs) are among the plethora of energy storage devices (ESDs) developed by researchers in the lithium-ion battery (LIB) era of the modern electronic world. Regardless of whether SIBs can replace LIBs or not in the electric vehicle (EV) market, SIBs undoubtedly brings a much-needed balance to the world, where large-scale ESDs can be utilized to store electricity. Though, exploitation of layered oxide cathode material for SIBs has a major impact, upon repeated sodium (de)intercalation, phase transition and volume expansion of these materials have been the major limitations for the realization of SIBs as mainstream ESDs. Notably, the recent development of phase transition-free, layered copper-doped sodium manganese oxide Na2.3Cu1.1Mn2O7-δ (NCuMnO) as a cathode material has helped to overcome the major limitation of sodium layered oxide materials. In the present study, we prepared NCUMNO nanoflakes by an ultrafast pyrosynthesis process and utilized them for the fabrication of SIBs. The ex situ XANES, in situ X-ray diffraction and galvanostatic intermittent titration technique results revealed the occurrence of a highly reversible electrochemical process at the NCuMnO cathode. With the novel material, superior rates of 127 mAh g-1 and 79.24 mAh g-1 at 0.2 C and 20 C, respectively, which were attributed to fast sodium-ion diffusion, and exceptionally high specific energy of 457.2 Wh kg-1 at a specific power of 72 Wh kg-1 were achieved.

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Sep 2019, accepted on 02 Dec 2019 and first published on 04 Dec 2019


Article type: Paper
DOI: 10.1039/C9TA09890A
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    Na2.3Cu1.1Mn2O7-δ nanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach

    V. Soundharrajan, B. Sambandam, M. H. Alfaruqi, S. Kim, J. Jo, S. Kim, V. Mathew, Y. Sun and J. Kim, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA09890A

Search articles by author

Spotlight

Advertisements