Jump to main content
Jump to site search


Spinel Oxide Nanoparticles Embedded in Nitrogen–doped Carbon Nanofibers as Robust and Self-Standing Bifunctional Oxygen Cathode for Zn−Air Batteries

Abstract

Rechargeable metal−air batteries entail nonprecious, efficient, and durable bifunctional electrode in catalyzing the oxygen reduction/evolution reaction (ORR/OER). Here, we report a facile, scalable synthesis of self−standing bifunctional electrode with CoMn2O4 (CMO) in situ embedded in nitrogen−doped carbon nanofibers (NCNF) by electrospinning. Strong coupling between CMO and NCNF facilitates the multiphase charge transport process. Meanwhile, the conductive carbonaceous network contributes to the overall stability by preventing CMO from corrosion and aggregation. As a result, the nanocomposite exhibits remarkable Pt−like ORR activity (onset/half−wave potential of 1.05/0.83 V) and high OER activity (overpotential of 340 mV at 10 mA cm–2). The rechargeable Zn−air battery assembled with CMO/NCNF delivers a peak power density of 224 mW cm−2 and low charge−discharge voltage gap of 0.85 V even after 350 cycles at 10 mA cm−2. Furthermore, the assembled bendable solid−state Zn–air battery shows rechargeability, suggesting the promising potential of spinel/carbon hybrids in flexible devices.

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Sep 2019, accepted on 09 Oct 2019 and first published on 11 Oct 2019


Article type: Paper
DOI: 10.1039/C9TA09873A
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    Spinel Oxide Nanoparticles Embedded in Nitrogen–doped Carbon Nanofibers as Robust and Self-Standing Bifunctional Oxygen Cathode for Zn−Air Batteries

    X. Chen, Z. Yan, M. Yu, H. Sun, F. Liu, Q. Zhang, F. Cheng and J. Chen, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA09873A

Search articles by author

Spotlight

Advertisements