Jump to main content
Jump to site search


Strain-Tunable Electronic Properties and Lithium Storage of 2D Transition Metal Carbide (MXene) Ti2CO2 as Flexible Electrodes

Abstract

Two-dimensional MXenes have attracted considerable interest as promising flexible electrode candidates due to its favorable flexibility and high specific capacitance. Thus, taking Ti2CO2 as the representative MXene, we have investigated the strain effects on electronic properties with focus on lithium adsorption and structural transformation by using the first-principles calculations. It is found that the indirect band gap in the pristine Ti2CO2 changes to direct band gaps with extensile strain and closes with compressive strain. The adsorption of the first Li layer will attract the unoccupied nearly free electron (NFE) states in pristine Ti2CO2 down to Fermi level in Ti2CO2Li2 while the adsorption of the second Li layer makes little change in the electronic structures owing to the pinning effects of NFE states near Fermi level in the Ti2CO2Li2. Moreover, the surface adsorption of Li atoms up to bilayers on Ti2CO2 is predicted to be energetically favorable and could be further stabilized by suppression. Meanwhile, the theoretical exploration predicts a possible decomposition of Ti2CO2Li4 back to Ti2C and Li2O under critical tensile strains. This work provides encouragement for the strain-tunable conduction behavior and lithium storage in Ti2CO2 and further shed light on the design and selection of electrode candidates for flexible energy storage applications.

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Aug 2019, accepted on 01 Nov 2019 and first published on 02 Nov 2019


Article type: Paper
DOI: 10.1039/C9TA09185H
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    Strain-Tunable Electronic Properties and Lithium Storage of 2D Transition Metal Carbide (MXene) Ti2CO2 as Flexible Electrodes

    Y. Li, N. LI, S. Zhao, J. Fan and J. J. Kai, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA09185H

Search articles by author

Spotlight

Advertisements