Issue 46, 2019

Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction

Abstract

Nickel and nitrogen co-doped carbon (Ni–N–C) has emerged as a promising catalyst for the CO2 reduction reaction (CO2RR); however, the chemical nature of its active sites has remained elusive. Herein, we report the exploration of the reactivity and active sites of Ni–N–C for the CO2RR. Single atom Ni coordinated with N confined in a carbon matrix was prepared through thermal activation of chemically Ni-doped zeolitic imidazolate frameworks (ZIFs) and directly visualized by aberration-corrected scanning transmission electron microscopy. Electrochemical results show the enhanced intrinsic reactivity and selectivity of Ni–N sites for the reduction of CO2 to CO, delivering a maximum CO faradaic efficiency of 96% at a low overpotential of 570 mV. Density functional theory (DFT) calculations predict that the edge-located Ni–N2+2 sites with dangling bond-containing carbon atoms are the active sites facilitating the dissociation of the C–O bond of the *COOH intermediate, while bulk-hosted Ni–N4 is kinetically inactive. Furthermore, the high capability of edge-located Ni–N4 being able to thermodynamically suppress the competitive hydrogen evolution is also explained. The proposal of edge-hosed Ni–N2+2 sites provides new insight into designing high-efficiency Ni–N–C for CO2 reduction.

Graphical abstract: Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction

Supplementary files

Article information

Article type
Communication
Submitted
13 Aug 2019
Accepted
29 Oct 2019
First published
30 Oct 2019

J. Mater. Chem. A, 2019,7, 26231-26237

Author version available

Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction

F. Pan, H. Zhang, Z. Liu, D. Cullen, K. Liu, K. More, G. Wu, G. Wang and Y. Li, J. Mater. Chem. A, 2019, 7, 26231 DOI: 10.1039/C9TA08862H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements