Jump to main content
Jump to site search


High rate hybrid MnO2@CNT fabric anode for Li-ion batteries: properties and lithium storage mechanism study by in-situ synchrotron X-ray scattering

Abstract

High-performance anodes for rechargeable Li-ion battery are produced by nanostructuring of the transition metal oxides on a conductive support. Here, we demonstrate a hybrid material of MnO2 directly grown onto fabrics of carbon nanotube fibres, which exhibits notable specific capacity over 1100 and 500 mAh/g at a discharge current density of 25 mA/g and 5 A/g, respectively, with coulombic efficiency of 97.5 %. Combined with 97 % capacity retention after 1500 cycles at a current density of 5 A/g, both capacity and stability are significantly above literature data. Detailed investigations involving electrochemical and in-situ synchrotron X-ray scattering study reveal that during galvanostatic cycling, MnO2 undergoes an irreversible phase transition to LiMnO2, which stores lithium through an intercalation process, followed by conversion mechanism and pseudocapacitive processes. This mechanism is further confirmed by Raman spectroscopy. The fraction of pseudocapacitive charge storage ranges from 27% to 83%, for current densities from 25 mA/g to 5 A/g. Firm attachment of the active material to the built-in current collector makes the electrodes flexible and mechanically robust, and ensures that the low charge transfer resistance and the high electrode surface area remain after irreversible phase transition of the active material and extensive cycling.

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Aug 2019, accepted on 07 Nov 2019 and first published on 07 Nov 2019


Article type: Paper
DOI: 10.1039/C9TA08800H
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    High rate hybrid MnO2@CNT fabric anode for Li-ion batteries: properties and lithium storage mechanism study by in-situ synchrotron X-ray scattering

    M. Rana, V. Sai Avvaru, N. Boaretto, V. A. A. de la Peña O'Shea, R. MARCILLA, V. Etacheri and J. Vilatela, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA08800H

Search articles by author

Spotlight

Advertisements