Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 42, 2019
Previous Article Next Article

Coordination polymer-based conductive materials: ionic conductivity vs. electronic conductivity

Author affiliations

Abstract

Coordination polymers (CPs) are emerging crystalline materials, and researchers have promoted their potential applications in various fields owing to their easily designed and tailorable structures, guest-accessible cavities and functional tunability. In this review, we mainly focused on describing the recent achievements of CPs/CP-based composites for ionic/electrical conductivity and provided their future perspectives. The designable and tailorable structures of CPs provide great opportunities to systemically tune their ionic/electrical conductivities, and various strategies have been employed to improve their conductivity. Meanwhile, the relationship between their structure and conductivity may offer some guidance for the design and synthesis of new conductive materials with high conductivity. We proposed major fundamental issues to be addressed in material design and application perspectives. By elaborating the advantages and challenges of CPs in ionic/electrical conductivity, some useful advice is provided in this review to shed some light on their development.

Graphical abstract: Coordination polymer-based conductive materials: ionic conductivity vs. electronic conductivity

Back to tab navigation

Article information


Submitted
30 Jul 2019
Accepted
07 Sep 2019
First published
20 Sep 2019

J. Mater. Chem. A, 2019,7, 24059-24091
Article type
Review Article

Coordination polymer-based conductive materials: ionic conductivity vs. electronic conductivity

H. Wang, X. Meng, L. Dong, Y. Chen, S. Li and Y. Lan, J. Mater. Chem. A, 2019, 7, 24059
DOI: 10.1039/C9TA08253K

Social activity

Search articles by author

Spotlight

Advertisements