Jump to main content
Jump to site search


Efficient and Stable CsPbI3 Perovskite Quantum Dots Enabled by in-situ Ytterbium Doping for Photovoltaic Application

Abstract

Colloidal perovskite nanocrystals, or quantum dots (QDs), have quickly emerged and exhibited unique opportunities for optoelectronic applications. This is due to their excellent optical and photovoltaic properties as well as composition tunability. Currently, there are only a limited number of publications correlating QD synthesis optimization with relevant device performance. Here, CsPbI3 QDs have been successfully synthesized and displayed improved optoelectrical properties by implementing an in-situ ytterbium (Yb) doping strategy during synthesis. Systematic investigations were carried out to examine the effects of Yb-doping. Preliminary experimental results indicated that Yb3+ lanthanide cations could effectively reduce the number of defects and trap states caused by surface and lattice vacancies. This result contributes to an improvement in QDs photoluminescence quantum yield (PLQY), material crystallinity, thermal stability and carrier transport. Consequently, the solar cells adopting optimally Yb-doped CsPbI3 QDs achieved the best power conversion efficiency (PCE) of 13.12% and displayed significantly improved storage stability under ambient conditions. These results indicate that in-situ doping has great potential to improve the quality of the resultant of perovskite QDs. This approach can provide new path to the breakthrough in QDs based solar cell technology.

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Jul 2019, accepted on 02 Aug 2019 and first published on 10 Aug 2019


Article type: Paper
DOI: 10.1039/C9TA07143A
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    Efficient and Stable CsPbI3 Perovskite Quantum Dots Enabled by in-situ Ytterbium Doping for Photovoltaic Application

    J. Shi, F. Li, J. Yuan, X. Ling, S. Zhou, Y. Qian and W. Ma, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA07143A

Search articles by author

Spotlight

Advertisements