Jump to main content
Jump to site search

Issue 33, 2019
Previous Article Next Article

Structural engineering of pyrrolo[3,4-f]benzotriazole-5,7(2H,6H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12%

Author affiliations

Abstract

In this work, we have synthesized two wide band gap donor polymers based on benzo[1,2-b:4,5-b′]dithiophene (BDT) and pyrrolo[3,4-f]benzotriazole-5,7(2H,6H)-dione (TzBI), namely, PBDT-TzBI and PBDT-F-TzBI and studied their photovoltaic properties by blending them with ITIC as an acceptor. Polymer solar cell devices made from PBDT-TzBI:ITIC and PBDT-F-TzBI:ITIC exhibited power conversion efficiencies (PCEs) of 9.22% and 11.02% and while annealing at 160 °C, improved the device performances to 10.24% and 11.98%, respectively. Upon solvent annealing with diphenyl ether (DPE) (0.5%) and chlorobenzene (CB), the PCE of the PBDT-F-TzBI-based device increased to 12.12%. The introduction of the fluorinated benzodithiophene (BDT-F) moiety on the backbone of PBDT-F-TzBI improved the open circuit voltage, short circuit current and fill factor simultaneously. The high PCEs of the PBDT-F-TzBI:ITIC-based devices were supported by comparison and analysis of the optical and electronic properties, the charge carrier mobilities, exciton dissociation probabilities, and charge recombination behaviors of the devices.

Graphical abstract: Structural engineering of pyrrolo[3,4-f]benzotriazole-5,7(2H,6H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12%

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Jun 2019, accepted on 25 Jul 2019 and first published on 25 Jul 2019


Article type: Paper
DOI: 10.1039/C9TA06385D
J. Mater. Chem. A, 2019,7, 19522-19530
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Structural engineering of pyrrolo[3,4-f]benzotriazole-5,7(2H,6H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12%

    B. A. Abdulahi, X. Li, M. Mone, B. Kiros, Z. Genene, S. Qiao, R. Yang, E. Wang and W. Mammo, J. Mater. Chem. A, 2019, 7, 19522
    DOI: 10.1039/C9TA06385D

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements