Issue 27, 2019

Diversities of stoichiometry and electrical conductivity in sodium sulfides

Abstract

Aiming at developing and understanding the active materials in the renewable energy-storage sodium–sulfur (Na–S) system, we systemically explored the phase diversity, electronic properties, and chemical bonding of the Na–S system at ambient and high pressure up to 50 GPa, using a combination of first-principles calculations with extensive structural searches. We identified four new stable phases; Na3S, Na5S3, Na2S2 and Na2S3. The previously unidentified Na2S3 with S32− polyanions shows Pnma symmetry with quite a low formation enthalpy relative to Na2S2 and Na2S4. The simulated voltage through Na2S4 to generate Na2S3 in a battery is predicted to be 1.65 V, consistent with previous measurements. The predicted tetragonal Na5S3 with infinite S chains has mixed valence states of sulfur atoms, which was first observed in alkali metal sulfides. Na3S exhibits a potential one-dimensional (1-D) electride with the chemical formula of [Na3S]+·e, where the sulfur atoms possess the highest coordination number (Na12S). Both Na3S and Na5S3 exhibit intrinsic metallic behaviors, clearly differing from other semiconducting phases. A detailed analysis of the electronic structure reveals the distinct electrical pathways of a 1-D electron gas in the channel voids in Na3S and infinite sulfur chains with metallic S–S bonding in Na5S3. Our results may help to discover new candidates in Na–S systems and elucidate the potential electrochemical mechanism in the Na–S battery.

Graphical abstract: Diversities of stoichiometry and electrical conductivity in sodium sulfides

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2019
Accepted
16 Jun 2019
First published
17 Jun 2019

J. Mater. Chem. A, 2019,7, 16472-16478

Diversities of stoichiometry and electrical conductivity in sodium sulfides

B. Wan, S. Xu, X. Yuan, H. Tang, D. Huang, W. Zhou, L. Wu, J. Zhang and H. Gou, J. Mater. Chem. A, 2019, 7, 16472 DOI: 10.1039/C9TA05907E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements