Issue 34, 2019

A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction

Abstract

Transition-metal nitrides have increasingly attracted interest for use as electrocatalysts in water splitting due to their superior catalytic activity and stability. However, the development of a general and simple strategy to synthesize metal nitrides remains challenging. Here we report a facile strategy for the synthesis of various porous monometallic and bimetallic nitrides on different substrates for the hydrogen evolution reaction (HER) in alkaline media. The best monometallic nitride of CoN supported on the Ni foam delivered current densities of 10 and 100 mA cm−2 at overpotentials of 95 and 212 mV, respectively in 1 M KOH. This performance was further improved through Ni-doping to form bimetallic nitrides of NiCoN, the best of which exhibited excellent HER performance with low overpotentials of 48 and 149 mV at current densities of 10 and 100 mA cm−2, respectively, along with superior stability in 1 M KOH. The enhanced performance is mainly attributed to the synergistic effect of Co and Ni, a larger surface area with more active sites, and improved electrical conductivity for more efficient charge transfer. This work demonstrates a particularly facile and general approach to synthesize porous transition metal nitrides with advanced HER performance.

Graphical abstract: A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
22 May 2019
Accepted
05 Jul 2019
First published
08 Jul 2019

J. Mater. Chem. A, 2019,7, 19728-19732

A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction

L. Yu, S. Song, B. McElhenny, F. Ding, D. Luo, Y. Yu, S. Chen and Z. Ren, J. Mater. Chem. A, 2019, 7, 19728 DOI: 10.1039/C9TA05455C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements