Issue 38, 2019

A sequential condensation route as a versatile platform for low cost and efficient hole transport materials in perovskite solar cells

Abstract

In an effort to diminish the cost of perovskite solar cells (PSCs) with regard to hole transport materials (HTMs), we employed an easily attainable condensation route to synthesize a cheap and efficient HTM. Using a newly engineered small organic molecule, N,N′-(naphthalene-1,5-diyl)bis(1-(2,3-diphenylquinoxalin-6-yl)-1-phenylmethanimine), coded as BEDN, the power conversion efficiency (PCE) reached 17.85%, comparable to that of the state-of-the-art HTM spiro-OMeTAD (19.50%). The BEDN's estimated cost is 1.38 ($ per g), which is considerably cheaper than spiro-OMeTAD, 92 ($ per g). The low cost and high efficiency are promising in commercialization of perovskite solar cells.

Graphical abstract: A sequential condensation route as a versatile platform for low cost and efficient hole transport materials in perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2019
Accepted
22 Aug 2019
First published
22 Aug 2019

J. Mater. Chem. A, 2019,7, 21867-21873

A sequential condensation route as a versatile platform for low cost and efficient hole transport materials in perovskite solar cells

B. Pashaei, H. Shahroosvand, M. Ameri, E. Mohajerani and M. K. Nazeeruddin, J. Mater. Chem. A, 2019, 7, 21867 DOI: 10.1039/C9TA05121J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements