Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 29, 2019
Previous Article Next Article

Local structure and vibrational dynamics of proton conducting Ba2In2O5(H2O)x

Author affiliations

Abstract

We study the local structure and vibrational dynamics of the brownmillerite-based proton conductors Ba2In2O5(H2O)x, with x = 0.30, 0.76, and 0.92, using infrared spectroscopy, inelastic neutron scattering and ab initio molecular dynamics simulations. Ba2In2O5(H2O)x is found to exhibit two main types of proton sites, H(1) and H(2). The H(1) site is characterised by the coexistence of two intra-octahedral hydrogen-bond geometries, whereas the H(2) site is characterised by inter-octahedral hydrogen bonding. While the strength of the hydrogen bonding is similar for the majority of protons in the two proton sites, ≈10% of the H(2) protons forms unusually strong hydrogen bonds due to local proton environments characterised by an unusually short oxygen–oxygen separation distance of ≈2.6 Å. These local proton environments are manifested as two O–H stretch bands in the infrared absorbance spectra, at 255 and 290 meV, respectively. These O–H stretch bands are as well observed in the related class of In-doped perovskite-type oxides, BaInyZr1−yO3−y/2 (0.25 ≤ y ≤ 0.75), suggesting that these perovskites may display brownmillerite-like distortions on a local length scale. In effect, these results point towards a clustering of the In atoms in these perovskite materials. Further, the infrared spectra of Ba2In2O5(H2O)x show a minor evolution as a function of x, because the protons tend to segregate into oxygen-rich hydrogen-rich domains upon dehydration. This points towards a highly anisotropic proton conduction mechanism in partially hydrated phases. This insight motivates efforts to identify ways to avoid phase separation, perhaps by suitable cation substitutions, as a route to accommodate high proton conductivity.

Graphical abstract: Local structure and vibrational dynamics of proton conducting Ba2In2O5(H2O)x

Back to tab navigation

Supplementary files

Article information


Submitted
17 Apr 2019
Accepted
28 Jun 2019
First published
11 Jul 2019

This article is Open Access

J. Mater. Chem. A, 2019,7, 17626-17636
Article type
Paper

Local structure and vibrational dynamics of proton conducting Ba2In2O5(H2O)x

A. Perrichon, M. Jiménez-Ruiz, L. Mazzei, S. M. H. Rahman and M. Karlsson, J. Mater. Chem. A, 2019, 7, 17626
DOI: 10.1039/C9TA04056K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements