Jump to main content
Jump to site search


Insight into the Role of Ni-Fe Dual Sites towards Oxygen Evolution Reaction Based on Atomically Metal-Doped Polymeric Carbon Nitride

Abstract

The oxygen evolution reaction (OER) plays a critical role for efficient conversion and storage of renewable energy sources, whereas the active sites for the most representative electrocatalysts, Ni-Fe compounds, remain in debate. In this work, we have developed polymeric carbon nitride (PCN) with atomically dispersed N-coordinated Ni-Fe sites to investigate the OER processes. The Ni-Fe dual sites consist of adjacent Ni and Fe atoms coordinated with N atoms in the PCN matrix. NiFe-codoped PCN exhibits higher electrocatalytic activity than monometal-doped catalysts, showing lower overpotential (310 mV at 10 mA·cm-2) and smaller Tafel slope (38 mV·dec-1) in 1 M KOH, indicating that Ni-Fe dual-metal sites significantly favor the OER process. According to density functional theory calculation based on oxidized-NiFe@PCN model, it was found that adjacent Ni and Fe atoms co-participate in the OER process for NiFe-codoped PCN, leading to much lower energy barrier (0.10 or 0.22 eV for U = 1.58 V), while the effect of electronic modification of the single metal active sites by the other component (Ni sites by Fe sites or vice versa) contributes less to activity enhancement, thus leading to a rational explanation on the synergistic effect towards the NiFe-based OER catalysts.

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Mar 2019, accepted on 08 May 2019 and first published on 13 May 2019


Article type: Paper
DOI: 10.1039/C9TA03163D
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    Insight into the Role of Ni-Fe Dual Sites towards Oxygen Evolution Reaction Based on Atomically Metal-Doped Polymeric Carbon Nitride

    C. Wu, X. Zhang, Z. Xia, M. Shu, H. Li, X. Xu, R. Si, A. I. Rykov, J. Wang, S. Yu, S. Wang and G. Sun, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA03163D

Search articles by author

Spotlight

Advertisements