Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 23, 2019
Previous Article Next Article

Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots

Author affiliations

Abstract

Mesoporous TiO2 sensitized with colloidal quantum dots (QDs) is considered as a promising system for photoelectrochemical (PEC) hydrogen generation, in view of its low cost and high solar energy to fuel conversion efficiency. On the other hand, the limited long term stability and low current density of this system still hinder its commercialization. Here, we report a CdSe/CdSeS alloy/CdS core/shell/shell QD sensitized mesoporous TiO2 photoanode, which exhibits high performance and long-term stability for solar-driven hydrogen generation. A gradient CdSe/alloy-shell/CdS core/shell/shell structure is designed to accelerate exciton separation through the band engineering approach. Compared with the common CdSe/CdS core/shell structure, light absorption of QDs containing an intermediate alloyed layer is extended to longer wavelengths and more importantly, the photocurrent density is improved up to 17.5 mA cm−2 under one sun illumination (AM 1.5 G, 100 mW cm−2), a record value for PEC cells based on colloidal QDs for hydrogen generation. In addition, the as-fabricated PEC cell shows an unprecedented long-term stability, maintaining 50% of its initial value after continuous operation for over 39 hours, indicating that the gradient core/shell/shell QD based photoanode is a promising candidate for solar-driven hydrogen generation.

Graphical abstract: Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots

Back to tab navigation

Supplementary files

Article information


Submitted
20 Mar 2019
Accepted
13 May 2019
First published
15 May 2019

J. Mater. Chem. A, 2019,7, 14079-14088
Article type
Paper

Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots

K. Wang, X. Tong, Y. Zhou, H. Zhang, F. Navarro-Pardo, G. S. Selopal, G. Liu, J. Tang, Y. Wang, S. Sun, D. Ma, Zhiming M. Wang, F. Vidal, H. Zhao, X. Sun and F. Rosei, J. Mater. Chem. A, 2019, 7, 14079
DOI: 10.1039/C9TA03026C

Social activity

Search articles by author

Spotlight

Advertisements