Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Large-diameter and Heteroatom-doped Graphene Nanotubes Decorated with Transition Metals as Carbon Hosts for Lithium-Sulfur Batteries

Abstract

This work addresses performance issues of lithium sulfur (Li-S) batteries via retaining the polysulfide intermediates within a novel cathode nanocarbon host. Herein, we report a series of nitrogen and oxygen co-doped and transition metal-decorated large size (200-500 nm in dimeter) graphene nanotubes (M-GNTs) (M = Co, Ni, and/or Fe) as effective carbon hosts for sulfur cathodes (S@M-GNTs) in Li-S batteries. The exceptionally large diameters of the graphene tubes allow facile diffusion of sulfur inside the tubes with sufficient loadings yet leaving room for volume expansion during the lithiation process. The GNTs with the largest diameter and abundant N and O doping along with CoNiFe alloy decoration (FeCoNi-GNTs) exhibit the best sulfur cathode performance. In addition to the unique nanocarbon structures, the heteroatom dopants and transition metal nanoparticles likely also play promotional roles in retaining long-chain polysulfide discharge intermediates within the carbon host, therefore improving rate capability and cycle stability. In particular, a S@FeCoNi-GNT cathode with a high sulfur loading (~4.5 mg-S cm-2) exhibits discharge capacities up to 1234.7 mAh g-1 at C/20 and 909.0 mAh g-1 at C/5. A discharge capacity of 554.4 mAh g-1 at 1C after 500 cycles was retained, further demonstrating its encouraging potential in Li-S batteries.

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Mar 2019, accepted on 13 May 2019 and first published on 13 May 2019


Article type: Paper
DOI: 10.1039/C9TA02889G
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    Large-diameter and Heteroatom-doped Graphene Nanotubes Decorated with Transition Metals as Carbon Hosts for Lithium-Sulfur Batteries

    O. Ogoke, S. Hwang, B. Hultman, M. Chen, S. Karakalos, Y. He, A. Ramsey , D. Su, P. Alexandridis and G. Wu, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA02889G

Search articles by author

Spotlight

Advertisements