Issue 22, 2019

Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation

Abstract

Selective adsorption of trace amounts of C2H6 from bulk C2H4 is a significantly important and extremely challenging task in industry, which requires an adsorbent with specific pore properties. Herein, we describe a strategy for adjusting the pore environment of metal–organic frameworks (MOFs) by introducing different amounts of methyl groups in the channel to enhance the guest–host interaction between C2H6 and the framework. To prove this concept, 2,3,5,6-tetramethylterephthalic acid (TMBDC) was deliberately added to a microporous MOF, Ni(BDC)(DABCO)0.5, affording a series of mixed-ligand materials, Ni(BDC)1−x(TMBDC)x(DABCO)0.5 (x = 0, 0.2, 0.45, 0.71, 1), having different pore environments. Significantly, these mixed-ligand materials demonstrated improved performance in terms of the adsorption capacity of C2H6 and C2H4 with an unprecedented C2H6 uptake of 2.21 mmol g−1 for Ni(TMBDC)(DABCO)0.5 at 0.0625 bar and 298 K. With the best theoretical C2H6/C2H4 selectivity predicted by IAST, Ni(TMBDC)(DABCO)0.5 exhibited effective separation of C2H6/C2H4 (1/15, v/v) and great recyclability in five consecutive adsorption/desorption cycles throughout the breakthrough experiment.

Graphical abstract: Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2019
Accepted
06 May 2019
First published
06 May 2019

J. Mater. Chem. A, 2019,7, 13585-13590

Author version available

Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation

X. Wang, Z. Niu, A. M. Al-Enizi, A. Nafady, Y. Wu, B. Aguila, G. Verma, L. Wojtas, Y. Chen, Z. Li and S. Ma, J. Mater. Chem. A, 2019, 7, 13585 DOI: 10.1039/C9TA02822F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements